GBJ150X SERIES

GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER

产

品

规

确

格

认

书

GBJ15005 THRU GBJ1510

GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER

REVERSE VOLTAGE: 50 to 1000 VOLTS FORWARD CURRENT: 15.0 AMPERE

FEATURES

· Glass passivated chip junction

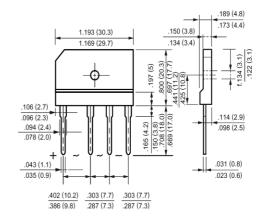
· Reliable low cost construction utilizing molded plastic technique

· Ideal for printed circuit board

· Low forward voltage drop

· Low reverse leakage current

· High surge current capability


MECHANICAL DATA

Case: Molded plastic, GBJ

Epoxy: UL 94V-O rate flame retardant

Terminals: Leads solderable per MIL-STD-202,

method 208 guaranteed Mounting position: Any Weight: 0.23ounce, 6.6gram GBJ

Dimensions in inches and (millimeters)

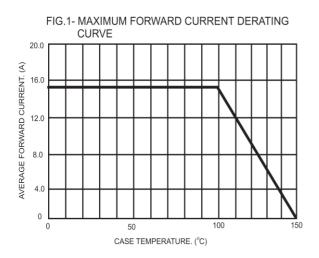
Maximum Ratings and Electrical Characteristics

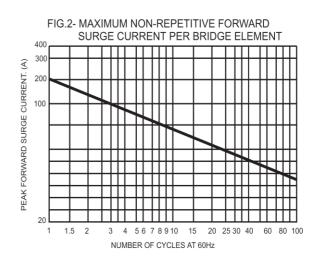
Ratings at 25 ambient temperature unless otherwise specified.

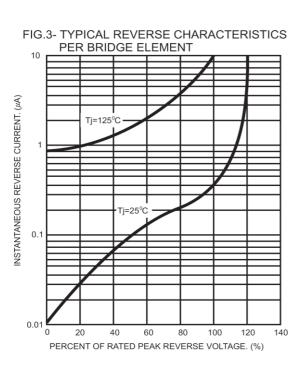
Single phase, half wave, 60Hz, resistive or inductive load.

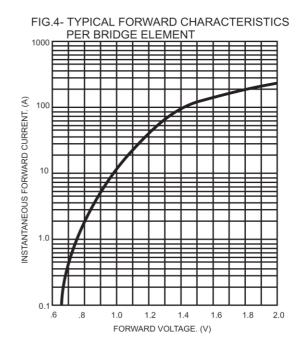
For capacitive load, derate current by 20%.

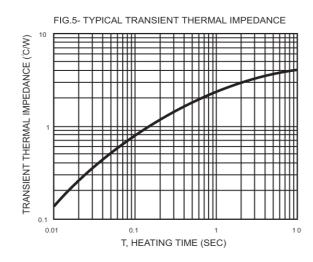
	Symbols	GBJ15005	GBJ1501	GBJ1502	GBJ1504	GBJ1506	GBJ1508	GBJ1510	Units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	V _{RMS}	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	V _{DC}	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current with Heatsink at T_C =100	I _(AV)	15.0							Amp
Peak Forward Surge Current,									
8.3ms single half-sine-wave	I_{FSM}	I _{FSM} 200							Amp
superimposed on rated load (JEDEC method)									
Maximum Forward Voltage Drop per Element at 7.5A DC and 25	V_{F}	1.05							Volts
Maximum Reverse Current at T _A =25	,	10.0							uAmp
at Rated DC Blocking Voltage T _A =125	I_R	I _R 500							
Typical Junction Capacitance (Note 1)	C_{J}	60							pF
Typical Thermal Resistance (Note 2)	$R_{\theta JC}$	0.8							/W
Operating and Storage Temperature Range	T _J , Tstg	-55 to +150							


NOTES:


- 1- Measured at 1 MHz and applied reverse voltage of 4.0 VDC.
- 2- Thermal Resistance from Junction to Case with Device Mounted on 300mm x 300mm x 1.6mmCu Plate Heatsink.






RATINGS AND CHARACTERISTIC CURVES

